Reddit Data Visualization Techniques

Transform Reddit analytics into compelling visual stories using Python visualization libraries, interactive dashboards, and professional design principles.

📚 Advanced Guide ⏱️ 35 min read 🔄 Updated: February 2026

Overview

Data visualization transforms raw Reddit analytics into actionable insights. The right visualization can reveal patterns in user behavior, sentiment trends, and community dynamics that would be impossible to see in spreadsheets or JSON data.

This guide covers visualization techniques specifically tailored for Reddit data, from time-series engagement charts to network graphs showing user interactions and word clouds revealing discussion themes.

💡 Visualization Selection

Choose visualizations based on your data type: time series for trends, bar charts for comparisons, network graphs for relationships, and word clouds for text analysis. The best visualization makes patterns obvious at a glance.

Reddit Engagement Over Time (Example)

Setup

Install the visualization libraries used throughout this guide.

# Core visualization
pip install matplotlib==3.8.0
pip install seaborn==0.13.0
pip install plotly==5.18.0

# Word clouds and text
pip install wordcloud==1.9.0
pip install pillow

# Network visualization
pip install networkx==3.2
pip install pyvis==0.3.2

# Dashboards
pip install streamlit==1.30.0
pip install dash==2.14.0

# Data processing
pip install pandas numpy

Design Principles

Effective visualizations follow consistent design principles that enhance readability and impact.

Color Palettes for Reddit Data

OG
Lt
Blue
Dark
Text
import matplotlib.pyplot as plt
import seaborn as sns


class RedditStyler:
    """Style configuration for Reddit visualizations."""

    # Reddit brand colors
    COLORS = {
        'orange': '#FF4500',      # Reddit orange
        'orange_light': '#FF8B60',
        'blue': '#0079D3',        # Link blue
        'dark': '#1A1A1B',        # Dark mode bg
        'light': '#FFFFFF',
        'text': '#D7DADC',
        'text_muted': '#818384',
        'positive': '#46D160',   # Upvote green
        'negative': '#EA0027',   # Downvote red
        'neutral': '#787C7E'
    }

    # Categorical palette
    PALETTE = ['#FF4500', '#0079D3', '#46D160', '#FFB000',
               '#7193FF', '#FF66AC', '#00C8FF', '#9E47FF']

    @classmethod
    def apply_dark_theme(cls):
        """Apply dark theme matching Reddit dark mode."""
        plt.style.use('dark_background')
        plt.rcParams.update({
            'figure.facecolor': cls.COLORS['dark'],
            'axes.facecolor': cls.COLORS['dark'],
            'axes.edgecolor': cls.COLORS['text_muted'],
            'axes.labelcolor': cls.COLORS['text'],
            'text.color': cls.COLORS['text'],
            'xtick.color': cls.COLORS['text_muted'],
            'ytick.color': cls.COLORS['text_muted'],
            'grid.color': '#343536',
            'font.family': 'sans-serif',
            'font.size': 11,
            'axes.titlesize': 14,
            'axes.labelsize': 12
        })

    @classmethod
    def sentiment_color(cls, value: float) -> str:
        """Get color based on sentiment value (-1 to 1)."""
        if value > 0.1:
            return cls.COLORS['positive']
        elif value < -0.1:
            return cls.COLORS['negative']
        return cls.COLORS['neutral']


# Apply theme
RedditStyler.apply_dark_theme()

Time Series Visualizations

Track engagement, sentiment, and activity trends over time.

Activity Timeline

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from datetime import datetime, timedelta


def plot_activity_timeline(df: pd.DataFrame,
                            date_col: str = 'created_utc',
                            value_col: str = 'score',
                            title: str = 'Reddit Activity Over Time'):
    """
    Plot activity timeline with rolling average.

    Args:
        df: DataFrame with timestamp and value columns
        date_col: Column name for timestamps
        value_col: Column name for values to plot
        title: Chart title
    """
    # Prepare data
    df = df.copy()
    df['date'] = pd.to_datetime(df[date_col], unit='s')
    daily = df.groupby(df['date'].dt.date)[value_col].agg(['sum', 'count', 'mean'])

    # Create figure
    fig, ax = plt.subplots(figsize=(14, 6))

    # Plot bars for daily totals
    bars = ax.bar(daily.index, daily['sum'],
                  color=RedditStyler.COLORS['orange'],
                  alpha=0.7, label='Daily Total')

    # Add 7-day rolling average line
    rolling = daily['sum'].rolling(window=7, min_periods=1).mean()
    ax.plot(daily.index, rolling, color=RedditStyler.COLORS['blue'],
            linewidth=2.5, label='7-Day Average')

    # Styling
    ax.set_title(title, fontsize=16, fontweight='bold', pad=20)
    ax.set_xlabel('Date', fontsize=12)
    ax.set_ylabel(value_col.title(), fontsize=12)
    ax.legend(loc='upper left')

    # Format x-axis
    plt.xticks(rotation=45)
    ax.grid(axis='y', alpha=0.3)

    plt.tight_layout()
    return fig


def plot_sentiment_timeline(df: pd.DataFrame,
                             date_col: str = 'created_utc',
                             sentiment_col: str = 'sentiment'):
    """Plot sentiment over time with positive/negative fill."""
    df = df.copy()
    df['date'] = pd.to_datetime(df[date_col], unit='s')
    daily_sentiment = df.groupby(df['date'].dt.date)[sentiment_col].mean()

    fig, ax = plt.subplots(figsize=(14, 5))

    # Plot line
    ax.plot(daily_sentiment.index, daily_sentiment.values,
            color=RedditStyler.COLORS['text'], linewidth=1.5)

    # Fill positive and negative areas
    ax.fill_between(daily_sentiment.index, daily_sentiment.values, 0,
                    where=(daily_sentiment.values >= 0),
                    color=RedditStyler.COLORS['positive'], alpha=0.5,
                    label='Positive')
    ax.fill_between(daily_sentiment.index, daily_sentiment.values, 0,
                    where=(daily_sentiment.values < 0),
                    color=RedditStyler.COLORS['negative'], alpha=0.5,
                    label='Negative')

    # Reference line at 0
    ax.axhline(y=0, color=RedditStyler.COLORS['text_muted'],
               linestyle='--', linewidth=1)

    ax.set_title('Sentiment Over Time', fontsize=16, fontweight='bold')
    ax.set_ylabel('Average Sentiment')
    ax.legend()

    plt.tight_layout()
    return fig

Activity Heatmap

import seaborn as sns


def plot_activity_heatmap(df: pd.DataFrame, date_col: str = 'created_utc'):
    """Create heatmap of activity by day of week and hour."""
    df = df.copy()
    df['datetime'] = pd.to_datetime(df[date_col], unit='s')
    df['hour'] = df['datetime'].dt.hour
    df['dayofweek'] = df['datetime'].dt.dayofweek

    # Create pivot table
    heatmap_data = df.pivot_table(
        index='dayofweek',
        columns='hour',
        values='id',
        aggfunc='count',
        fill_value=0
    )

    # Day labels
    day_labels = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
                  'Friday', 'Saturday', 'Sunday']

    fig, ax = plt.subplots(figsize=(16, 6))

    sns.heatmap(
        heatmap_data,
        cmap='YlOrRd',
        ax=ax,
        cbar_kws={'label': 'Activity Count'},
        linewidths=0.5
    )

    ax.set_title('Activity by Day and Hour (UTC)', fontsize=16, fontweight='bold')
    ax.set_xlabel('Hour of Day', fontsize=12)
    ax.set_ylabel('Day of Week', fontsize=12)
    ax.set_yticklabels(day_labels, rotation=0)

    plt.tight_layout()
    return fig

Distribution Charts

Visualize the distribution of scores, comment counts, and other metrics.

Score Distribution

def plot_score_distribution(df: pd.DataFrame, score_col: str = 'score'):
    """Plot distribution of post/comment scores."""
    fig, axes = plt.subplots(1, 2, figsize=(14, 5))

    scores = df[score_col].values

    # Histogram
    ax1 = axes[0]
    ax1.hist(scores, bins=50, color=RedditStyler.COLORS['orange'],
             edgecolor='white', alpha=0.8)
    ax1.set_title('Score Distribution', fontsize=14, fontweight='bold')
    ax1.set_xlabel('Score')
    ax1.set_ylabel('Count')
    ax1.axvline(np.median(scores), color=RedditStyler.COLORS['blue'],
                linestyle='--', label=f'Median: {np.median(scores):.0f}')
    ax1.legend()

    # Log-scale for better visibility
    ax2 = axes[1]
    positive_scores = scores[scores > 0]
    ax2.hist(np.log10(positive_scores + 1), bins=50,
             color=RedditStyler.COLORS['blue'], edgecolor='white', alpha=0.8)
    ax2.set_title('Score Distribution (Log Scale)', fontsize=14, fontweight='bold')
    ax2.set_xlabel('Log10(Score + 1)')
    ax2.set_ylabel('Count')

    plt.tight_layout()
    return fig


def plot_subreddit_comparison(df: pd.DataFrame,
                               top_n: int = 10,
                               metric: str = 'score'):
    """Compare metrics across subreddits."""
    # Aggregate by subreddit
    subreddit_stats = df.groupby('subreddit').agg({
        metric: ['mean', 'sum', 'count']
    }).round(2)

    subreddit_stats.columns = ['avg', 'total', 'count']
    top_subs = subreddit_stats.nlargest(top_n, 'total')

    fig, ax = plt.subplots(figsize=(12, 6))

    bars = ax.barh(range(len(top_subs)), top_subs['total'],
                   color=RedditStyler.PALETTE[:len(top_subs)])

    ax.set_yticks(range(len(top_subs)))
    ax.set_yticklabels(top_subs.index)
    ax.invert_yaxis()

    ax.set_title(f'Top {top_n} Subreddits by Total {metric.title()}',
                 fontsize=16, fontweight='bold')
    ax.set_xlabel(f'Total {metric.title()}')

    # Add value labels
    for i, (v, c) in enumerate(zip(top_subs['total'], top_subs['count'])):
        ax.text(v + max(top_subs['total']) * 0.01, i,
                f'{v:,.0f} ({c:,} posts)', va='center',
                fontsize=9, color=RedditStyler.COLORS['text_muted'])

    plt.tight_layout()
    return fig

Word Clouds

Visualize common words and themes in Reddit discussions.

Custom Word Cloud

from wordcloud import WordCloud, STOPWORDS
from collections import Counter
import re


class RedditWordCloud:
    """Generate word clouds from Reddit text data."""

    def __init__(self):
        # Reddit-specific stopwords
        self.stopwords = STOPWORDS.union({
            'reddit', 'post', 'comment', 'http', 'https',
            'www', 'com', 'org', 'deleted', 'removed',
            'edit', 'subreddit', 'nbsp', 'amp'
        })

    def preprocess_text(self, texts: List[str]) -> str:
        """Clean and combine texts."""
        combined = ' '.join(texts)

        # Remove URLs
        combined = re.sub(r'https?://\S+', '', combined)

        # Remove Reddit formatting
        combined = re.sub(r'\[.*?\]\(.*?\)', '', combined)  # Markdown links
        combined = re.sub(r'r/\w+', '', combined)  # Subreddit refs
        combined = re.sub(r'u/\w+', '', combined)  # User refs

        # Remove special characters
        combined = re.sub(r'[^a-zA-Z\s]', ' ', combined)

        return combined.lower()

    def generate(self, texts: List[str],
                  width: int = 1200,
                  height: int = 600,
                  max_words: int = 200,
                  background_color: str = '#1A1A1B',
                  colormap: str = 'YlOrRd') -> WordCloud:
        """Generate word cloud from Reddit texts."""
        processed_text = self.preprocess_text(texts)

        wc = WordCloud(
            width=width,
            height=height,
            max_words=max_words,
            stopwords=self.stopwords,
            background_color=background_color,
            colormap=colormap,
            prefer_horizontal=0.9,
            min_font_size=10,
            max_font_size=150,
            random_state=42
        ).generate(processed_text)

        return wc

    def plot(self, texts: List[str], title: str = 'Word Cloud') -> plt.Figure:
        """Generate and display word cloud."""
        wc = self.generate(texts)

        fig, ax = plt.subplots(figsize=(14, 7))
        ax.imshow(wc, interpolation='bilinear')
        ax.axis('off')
        ax.set_title(title, fontsize=18, fontweight='bold', pad=20)

        plt.tight_layout()
        return fig

    def comparative_clouds(self, text_groups: Dict[str, List[str]]) -> plt.Figure:
        """Generate side-by-side word clouds for comparison."""
        n_groups = len(text_groups)
        fig, axes = plt.subplots(1, n_groups, figsize=(7 * n_groups, 6))

        if n_groups == 1:
            axes = [axes]

        for ax, (name, texts) in zip(axes, text_groups.items()):
            wc = self.generate(texts, width=800, height=500)
            ax.imshow(wc, interpolation='bilinear')
            ax.axis('off')
            ax.set_title(name, fontsize=14, fontweight='bold')

        plt.tight_layout()
        return fig


# Usage
wc_generator = RedditWordCloud()
fig = wc_generator.plot(post_texts, title='r/technology Discussion Topics')
plt.savefig('wordcloud.png', dpi=150, bbox_inches='tight')

Network Graphs

Visualize relationships between users, subreddits, and topics.

User Interaction Network

import networkx as nx
from pyvis.network import Network


class RedditNetworkVisualizer:
    """Visualize Reddit relationship networks."""

    def build_user_network(self, interactions: List[Dict]) -> nx.Graph:
        """
        Build network from user interactions.

        interactions: list of {'from': user1, 'to': user2, 'weight': count}
        """
        G = nx.Graph()

        for interaction in interactions:
            G.add_edge(
                interaction['from'],
                interaction['to'],
                weight=interaction.get('weight', 1)
            )

        return G

    def build_subreddit_network(self, user_subreddits: Dict[str, List[str]],
                                  min_overlap: int = 5) -> nx.Graph:
        """Build network of subreddits connected by shared users."""
        from collections import defaultdict

        # Count user overlap between subreddits
        subreddit_users = defaultdict(set)
        for user, subs in user_subreddits.items():
            for sub in subs:
                subreddit_users[sub].add(user)

        G = nx.Graph()
        subreddits = list(subreddit_users.keys())

        for i, sub1 in enumerate(subreddits):
            G.add_node(sub1, size=len(subreddit_users[sub1]))

            for sub2 in subreddits[i+1:]:
                overlap = len(subreddit_users[sub1] & subreddit_users[sub2])
                if overlap >= min_overlap:
                    G.add_edge(sub1, sub2, weight=overlap)

        return G

    def plot_static(self, G: nx.Graph, title: str = 'Network Graph') -> plt.Figure:
        """Create static matplotlib network visualization."""
        fig, ax = plt.subplots(figsize=(14, 10))

        # Layout
        pos = nx.spring_layout(G, k=2, iterations=50, seed=42)

        # Node sizes based on degree
        node_sizes = [G.degree(n) * 100 + 200 for n in G.nodes()]

        # Edge widths based on weight
        edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
        max_weight = max(edge_weights) if edge_weights else 1
        edge_widths = [w / max_weight * 3 + 0.5 for w in edge_weights]

        # Draw
        nx.draw_networkx_edges(G, pos, ax=ax, width=edge_widths,
                               alpha=0.4, edge_color=RedditStyler.COLORS['text_muted'])
        nx.draw_networkx_nodes(G, pos, ax=ax, node_size=node_sizes,
                               node_color=RedditStyler.COLORS['orange'], alpha=0.8)
        nx.draw_networkx_labels(G, pos, ax=ax, font_size=8,
                                font_color=RedditStyler.COLORS['text'])

        ax.set_title(title, fontsize=16, fontweight='bold')
        ax.axis('off')

        plt.tight_layout()
        return fig

    def create_interactive(self, G: nx.Graph,
                            output_file: str = 'network.html',
                            height: str = '700px'):
        """Create interactive network visualization with pyvis."""
        net = Network(height=height, width='100%',
                      bgcolor=RedditStyler.COLORS['dark'],
                      font_color=RedditStyler.COLORS['text'])

        # Add nodes
        for node in G.nodes():
            size = G.degree(node) * 5 + 10
            net.add_node(node, label=str(node), size=size,
                         color=RedditStyler.COLORS['orange'])

        # Add edges
        for u, v, data in G.edges(data=True):
            weight = data.get('weight', 1)
            net.add_edge(u, v, value=weight)

        # Physics settings
        net.toggle_physics(True)
        net.set_options("""
        var options = {
            "nodes": {
                "borderWidth": 2,
                "borderWidthSelected": 4
            },
            "edges": {
                "color": {"inherit": true},
                "smooth": {"type": "continuous"}
            },
            "physics": {
                "barnesHut": {
                    "gravitationalConstant": -30000,
                    "springLength": 250
                }
            }
        }
        """)

        net.save_graph(output_file)
        return output_file

Interactive Plotly Charts

Create rich, interactive visualizations for web applications and dashboards.

Interactive Time Series

import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots


class PlotlyRedditCharts:
    """Interactive visualizations using Plotly."""

    def __init__(self):
        self.template = 'plotly_dark'
        self.colors = RedditStyler.PALETTE

    def activity_timeline(self, df: pd.DataFrame) -> go.Figure:
        """Interactive activity timeline with hover details."""
        df = df.copy()
        df['date'] = pd.to_datetime(df['created_utc'], unit='s')
        daily = df.groupby(df['date'].dt.date).agg({
            'score': ['sum', 'mean', 'count'],
            'num_comments': 'sum'
        }).reset_index()
        daily.columns = ['date', 'total_score', 'avg_score',
                         'post_count', 'total_comments']

        fig = make_subplots(
            rows=2, cols=1,
            shared_xaxes=True,
            vertical_spacing=0.1,
            subplot_titles=('Daily Score', 'Post Count')
        )

        # Score chart
        fig.add_trace(
            go.Bar(x=daily['date'], y=daily['total_score'],
                   name='Total Score',
                   marker_color=RedditStyler.COLORS['orange'],
                   hovertemplate='Date: %{x}
Score: %{y:,.0f}'
), row=1, col=1 ) # Post count chart fig.add_trace( go.Scatter(x=daily['date'], y=daily['post_count'], mode='lines+markers', name='Post Count', line=dict(color=RedditStyler.COLORS['blue'], width=2), hovertemplate='Date: %{x}
Posts: %{y}'
), row=2, col=1 ) fig.update_layout( template=self.template, title='Reddit Activity Over Time', showlegend=True, height=600 ) return fig def subreddit_treemap(self, df: pd.DataFrame) -> go.Figure: """Interactive treemap of subreddit activity.""" sub_stats = df.groupby('subreddit').agg({ 'score': 'sum', 'id': 'count' }).reset_index() sub_stats.columns = ['subreddit', 'total_score', 'post_count'] fig = px.treemap( sub_stats, path=['subreddit'], values='post_count', color='total_score', color_continuous_scale='YlOrRd', title='Subreddit Activity (Size: Posts, Color: Score)' ) fig.update_layout(template=self.template) return fig def sentiment_scatter(self, df: pd.DataFrame) -> go.Figure: """Interactive scatter of posts by sentiment and score.""" fig = px.scatter( df, x='sentiment', y='score', color='subreddit', size='num_comments', hover_data=['title'], title='Posts by Sentiment and Score', labels={'sentiment': 'Sentiment Score', 'score': 'Post Score'} ) fig.update_layout(template=self.template) return fig # Usage charts = PlotlyRedditCharts() fig = charts.activity_timeline(df) fig.write_html('activity.html') fig.show()

Streamlit Dashboards

Build interactive dashboards for Reddit analytics with minimal code.

Complete Dashboard

import streamlit as st
import pandas as pd
import plotly.express as px


def reddit_dashboard():
    """Complete Reddit analytics dashboard."""

    st.set_page_config(
        page_title="Reddit Analytics",
        page_icon="📊",
        layout="wide"
    )

    st.title("📊 Reddit Analytics Dashboard")

    # Sidebar filters
    st.sidebar.header("Filters")

    # File upload or demo data
    uploaded_file = st.sidebar.file_uploader(
        "Upload Reddit data (CSV)",
        type=['csv']
    )

    if uploaded_file:
        df = pd.read_csv(uploaded_file)
    else:
        st.info("Upload data or using demo dataset")
        df = pd.DataFrame({
            'subreddit': ['tech'] * 100 + ['gaming'] * 100,
            'score': np.random.randint(1, 1000, 200),
            'created_utc': pd.date_range('2024-01-01', periods=200, freq='H').astype('int64') // 10**9
        })

    # Subreddit filter
    subreddits = ['All'] + sorted(df['subreddit'].unique().tolist())
    selected_sub = st.sidebar.selectbox("Subreddit", subreddits)

    if selected_sub != 'All':
        df = df[df['subreddit'] == selected_sub]

    # Key metrics
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Total Posts", f"{len(df):,}")
    with col2:
        st.metric("Total Score", f"{df['score'].sum():,}")
    with col3:
        st.metric("Avg Score", f"{df['score'].mean():.1f}")
    with col4:
        st.metric("Subreddits", df['subreddit'].nunique())

    # Charts row
    col1, col2 = st.columns(2)

    with col1:
        st.subheader("Activity Over Time")
        df['date'] = pd.to_datetime(df['created_utc'], unit='s')
        daily = df.groupby(df['date'].dt.date)['score'].sum().reset_index()
        fig = px.line(daily, x='date', y='score')
        fig.update_layout(template='plotly_dark')
        st.plotly_chart(fig, use_container_width=True)

    with col2:
        st.subheader("Score Distribution")
        fig = px.histogram(df, x='score', nbins=30)
        fig.update_layout(template='plotly_dark')
        st.plotly_chart(fig, use_container_width=True)

    # Subreddit breakdown
    st.subheader("Subreddit Comparison")
    sub_stats = df.groupby('subreddit')['score'].agg(['sum', 'mean', 'count'])
    st.dataframe(sub_stats.style.highlight_max(axis=0))


if __name__ == "__main__":
    reddit_dashboard()
✅ Running the Dashboard

Save the code to dashboard.py and run with: streamlit run dashboard.py

Export and Sharing

Save visualizations in various formats for reports and presentations.

Export Functions

class ChartExporter:
    """Export charts to various formats."""

    @staticmethod
    def save_matplotlib(fig: plt.Figure, path: str,
                         dpi: int = 150, transparent: bool = False):
        """Save matplotlib figure."""
        fig.savefig(path, dpi=dpi, bbox_inches='tight',
                    transparent=transparent, facecolor=fig.get_facecolor())

    @staticmethod
    def save_plotly(fig: go.Figure, path: str, format: str = 'html'):
        """Save Plotly figure."""
        if format == 'html':
            fig.write_html(path)
        elif format == 'png':
            fig.write_image(path, scale=2)
        elif format == 'svg':
            fig.write_image(path)
        elif format == 'json':
            fig.write_json(path)

    @staticmethod
    def create_report(figures: Dict[str, plt.Figure],
                       output_path: str = 'report.pdf'):
        """Create PDF report with multiple figures."""
        from matplotlib.backends.backend_pdf import PdfPages

        with PdfPages(output_path) as pdf:
            for title, fig in figures.items():
                pdf.savefig(fig, bbox_inches='tight')
                plt.close(fig)
Format Use Case Interactive File Size
PNG Reports, presentations No Medium
SVG Web, scalable graphics No Small
HTML Interactive dashboards Yes Medium
PDF Print, formal reports No Medium
JSON Data preservation Reconstructible Small

Visualize Reddit Data Instantly

reddapi.dev provides built-in visualization tools for Reddit analytics. Explore trends, sentiment, and engagement patterns through our interactive dashboard - no coding required.

Try Visual Analytics →

Frequently Asked Questions

Which visualization library should I use?

Use Matplotlib/Seaborn for static publication-quality charts and reports. Use Plotly for interactive web visualizations. Use Streamlit/Dash for building complete dashboards. For large networks, use pyvis for interactive exploration or Gephi for advanced analysis.

How do I handle large datasets for visualization?

For large datasets: (1) Aggregate data before plotting (daily/weekly summaries), (2) Sample data for scatter plots, (3) Use WebGL-based renderers in Plotly for 100K+ points, (4) Consider server-side rendering for dashboards, (5) Use datashader for extremely large datasets that would otherwise crash browsers.

How can I make my word clouds more meaningful?

Improve word clouds by: (1) Using TF-IDF weights instead of raw counts to emphasize distinctive words, (2) Adding domain-specific stopwords, (3) Using n-grams to capture phrases, (4) Coloring by sentiment or category, (5) Shaping the cloud to match your topic (e.g., Twitter bird for social media analysis).

What's the best way to show sentiment over time?

For sentiment trends: (1) Use area charts with positive/negative fills, (2) Show rolling averages to reduce noise, (3) Overlay event markers for context, (4) Use dual-axis charts combining sentiment with volume, (5) Consider heatmaps for sentiment by day/hour patterns.

How do I choose colors for data visualization?

Follow color best practices: (1) Use sequential palettes for continuous data, (2) Use diverging palettes for data with a meaningful center point, (3) Limit categorical colors to 8-10, (4) Ensure sufficient contrast for accessibility, (5) Consider colorblind-friendly palettes like viridis, (6) Match brand colors when appropriate (Reddit orange).

Additional Resources